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   Background: Arsenic (As) is one of major environmental toxicants that adversely 

affect living organisms. Microplastics (MPs) are small plastic particles that are 

hazardous because they may be toxic or conjugate with some toxic elements. 

Objective: The present research was conducted to assess whether the treatment of As 

with polystyrene microplastics (PS-MPs) enhance their toxic effects on the hepatic 

tissues of Labeo rohita. 

Methods: The experiment was conducted at Government College University, 

Faisalabad, using 85 healthy Labeo rohita (average 8.91 cm, 7.3 g). Fish were 

acclimatized and randomly divided into four groups i.e., control group, As treatment 

group (4.05mgL
−1

), PS-MPs treatment group (1mgL
−1

), and As (4.05mgL
−1

) plus 

PSMPs (1mgL
−1

) combined treatment group for 21 days. Blood and liver samples 

were collected post-treatment for hematological, antioxidant, hepatic, and 

inflammatory analyses. Enzymatic activities and biomarkers were measured using 

standard biochemical methods. 

Results: Exposure to As and PS-MPs, especially their combination, significantly 

reduced RBCs and hemoglobin, increased WBCs, and suppressed antioxidant enzyme 

activities (SOD, CAT, GST). Reactive oxygen species (ROS) and Thiobarbituric acid 

reactive substances (TBARS) levels were elevated, indicating oxidative stress. Liver 

enzymes (ALT, AST) and inflammatory cytokines (IL-1β, IL-6) were significantly 

higher in the As+PS-MPs group compared to individual treatments or control. 

Conclusion: Co-exposure to As and PS-MPs caused severe hematological, oxidative, 

hepatic, and inflammatory disturbances in L. rohita. Their combined toxicity was 

greater than individual exposures, indicating a synergistic effect that may lead to 

pronounced liver damage and physiological dysfunction. 
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Introduction 

Environmental pollution, especially of water, is one of the 

key global problems. Not only is water pollution seriously 

impacting on the survival, development and reproduction of 

aquatic organisms but it also has an influence on the lives 
of human beings due to its ability of bioaccumulation [1]. 

Fish is one of the staple foods that is cost-effective, with 

high nutritional animal protein content [2]. Fish 

development, especially early development, is quite 

susceptible to water contamination. Aquatic environment 
contamination by heavy metals (e.g., lead (Pb), cadmium 
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(Cd), arsenic (As), mercury (Hg) etc.) significantly affect 

the development and physiology of fish, including the 

development of organs, spawning, and reproduction, 

leading to the reduced offspring quantity and quality [3]. 

Waterborne heavy metals intake by a fish lead to functional 

and structural disruptions in numerous tissues as well as 

organs [4]. 

Arsenic (As) is one of the key toxicants in the aquatic 

ecosystem that contaminates water [5]. As is a metalloid 

toxicant that is found extensively throughout the world in 

lakes, canals, rivers,  ponds, and groundwater, as well as 

seawater due to the unregulated flow of industrial waste 

products and pesticides into the aquatic ecosystem [6]. The 

World Health Organization (WHO) has placed As among 

the leading chemicals posing risk to public health [7]. As 

concentrations have been recorded up to 800-2500ppm in 

numerous countries, i.e., Bangladesh and Chile [8]. 

High level of As exposure has been directly related to 

numerous diseases like lung and skin cancers along with 

cardiovascular diseases and liver disorders [9]. The adverse 

effects of As on fish growth, development, RNA/DNA 

ratio, histopathology, gene expression and mortality have 

been established through earlier studies [10]. This toxicant 

is capable of inducing biochemical as well as physiological 

alterations in the fish that produce harmful effects in the 

development as well as growth of fish [11]. Elevated 

concentrations of As alters the fish physiology and result in 

immune and reproductive disorder and even death [12]. 

Microplastics (MPs) are categorized into primary and 

secondary MPs depending on where they originate from 

and the manufacturing process [13]. The primary MPs are 

small pieces of plastic that are generally used in textiles, 

care products, and drugs. These particles enter aquatic 

environments primarily via runoff from the surface waters 

and discharge from treatment plants (WWTPs) [14]. The 

larger pieces of plastic degrade into secondary MPs. Some 

of the major sources of these large pieces are fishing nets, 

resin materials, domestic products, and disposable products 

[8][15]. The process of breakdown raises the overall 

environmental concentration of MPs, which is becoming a 

global concern. 

MPs affect the health of humans because they have the 

ability to accumulate in seafood [16]. Aquatic organisms 

ingest MPs that bioaccumulate in certain organs, leading to 

oxidative stress, thus decreasing the growth and 

development of sea animals [13]. MPs have adverse effects 

on the health of living organisms and damages various 

organs, such as gut, liver, and kidney, testes 

[17][18][19][20]. When MPs are consumed by fishes, they 

are deposited in the organs and tissues of fishes, leading to 

different kinds of negative health effects [21]. MPs 
ingestion causes severe damage to the liver, including 

enhanced accumulation of fats, inflammation, fibrosis, 

structural injury, and apoptosis [22]. 

Oxidative stress is an occurrence where the body’s reactive 

oxygen species (ROS) are unbalanced compared to 

antioxidants scavenging them [23]. ROS are naturally 

occurring or induced molecules produced within the body 

through metabolic activities, but they can be elevated by 

external stimuli like exposure to pollutants or toxicants. 

Excess ROS can bring about harm to cells and tissues, 

resulting in inflammation as well as other negative health 

outcomes. Reducing the nutrition level of the fish as well as 

the fish population has an important influence on the diet of 

humans but also on tradition and economy globally [24]. 

As and MPs are among the most prevalent environmental 

pollutants. Research suggests that MPs may increase the 

bioaccumulation of other toxicants as they can attach with 

MPs. After attaching with MPs, these chemicals not only 

accumulate in the body, but their adverse effects are also 

increased significantly [25]. Therefore, the current research 

was conducted to assess the combined effect of MPs and 

As on the hepatic tissues of Labeo rohita. We hypothesized 

that MPs may enhance the toxicity of As and induce 

toxicity in the liver of L. rohita. 

Methods 

Experimental Animals 

This in-vivo experimental study was executed in 

Government College University, Faisalabad, Pakistan. 85 

healthy and uniform sized L. rohita were purchased from 

local hatchery and transported to the research site. The fish 

were 90 days old, and their average length and weight were 

8.91±1.32cm and 7.3±1.57g, respectively. The fish was 

kept in glass aquariums and acclimatized in the laboratory 

environment for 90 days at 25±1℃ temperature, 6.0-7.5 mg 

L
–1

 dissolved oxygen (DO) and 7.5-8.5 pH. The fish were 

treated with 5g/L sodium chloride to lower the risk of 

parasites and infection. Fish were given commercial feed 

and the ethical guidelines of EU (2010/63/EU) were 

followed during the experiment. 

Chemicals 

Polystyrene microplastics (PS-MPs) and arsenic (As) were 

purchased from Macklin Biochemical Technology 

(Shanghai, China). All other chemicals used in the 

experiment were of analytical grade. 

Group allocation 

Fish were kept randomly assorted into 4 equal groups and 

each group contained 20 fish. The groups included, 

Control, As treated (4.05mgL
−1

), PS-MPs treated (1mgL
−1

) 

and As (4.05mgL
−1

)+PSMPs (1mgL
−1

) co-treated group. 
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The experiment was conducted for 21 days and then the 

fish were anaesthetized and killed. Their blood was taken in 

blood vials and stored at -20℃ for subsequent analysis. 

Moreover, their liver was taken out and placed in ice box 

and kept at -20℃ for biochemical analysis. 

Biochemical tests 

Biochemical tests were conducted to measure the 

concentrations of blood parameters, antioxidant enzymes, 

inflammatory indices and liver function markers. DxH 900 

Hematology Analyzer (Beckman Coulter, California, USA) 

was used to determine hematology parameters including 

red blood cells (RBCs) count, white blood cells (WBCs) 

count, and Hemoglobin concentrations.  

Hepatic tissues were homogenized and supernatant was 

collected and stored at -80℃ for further analysis. The 

activities of antioxidant enzymes i.e., SOD, GST and CAT 

were estimated via the methodology of Winterbourn et al. 

[26], Habig et al. [27] and Aebi et al. [28], respectively. 

Moreover, the levels of Thiobarbituric acid reactive 

substances (TBARS) and ROS were estimated as per the 

techniques of Iqbal et al. [29] and Hayashi et al., [30], 

respectively. 

The activity of ALT, AST and ALP was estimated by using 

the kits provided by Bioactive Diagnostic (Bad Homburg, 

Germany). Moreover, the levels of inflammatory cytokines 

(IL-1β, and IL-6) were measured using ELISA kits 

(Cusabio, US). 

Statistical analysis 

The data were expressed as Mean±SEM. SPSS (v26) was 

used for the statistical analysis and GraphPad Prism 9 was 

used to generate graphs. One-way ANOVA followed by 

Tukey’s test was employed for the comparison of groups. P 

value less than 0.05 was considered significant. 

Results 

Effects of exposure of As and PS-MPs on hematological 

markers 

The results in Table 1 showed that As and PS-MPs 

exposure significantly affected the concentration of 

hematological markers. RBCs and hemoglobin were 

significantly (p<0.05) reduced and WBCs were increased 

after the exposure to As, PS-MPs and As + PS-MPs co-

exposure, as compared to control. Moreover, RBCs, WBCs 

and hemoglobin exhibited non-significant differences 

among As and PS-MPs group. However, As + PS-MPs co-

treated group was affected the most and showed lowest 

concentrations of RBCs and hemoglobin and high 

concentrations of WBCs, as compared to the other groups. 

Table 1. The effect of As and PS-MPs on hematological 

markers. 

 Control As PS-MPs 
As + PS-

MPs 

RBC  3.31±0.07
a 

2.79±0.06
b 

2.68±0.09
b 

1.94±0.10
c 

WBC 12.31±0.19
c 

18.93±0.38
b 

17.56±0.48
b 

24.62±0.87
a 

Hb 9.13±0.22
a 

7.83±0.21
b 

8.01±0.31
b 

5.28±0.14
c 

RBC (10
6
/mm

3
), WBC (10

3
/mm

3
),

 
Hemoglobin (g/dL). 

Values showing different superscripts are significantly 

(p<0.05) different from each other. 

 

Effects of exposure of As and PS-MPs on antioxidant 

enzymes and oxidative stress markers 

Figure 1 and 2 shows the effect of As and PS-MPs on 

antioxidant enzymes and oxidative stress markers. The 

graphs show that As, PS-MPs and As + PS-MPs exposure 

significantly (p<0.05) reduced the activities of SOD, CAT 

and GST while increasing the level of TBARS and ROS, as 

compared to the control group. However, the levels of these 

markers were approximately similar in the As and PS-MPs 

treated groups. Nevertheless, the group co-treated with As 

+ PS-MPs showed the lowest activities of antioxidants and 

the highest levels of TBARS and ROS. 

Effects of exposure of As and PS-MPs on hepatic serum 
and inflammatory markers 

Figure 3 and 4 demonstrate that As and PS-MPs exhibited 

marked impact on the levels of hepatic serum and 

inflammatory markers. The levels of ALT, AST, IL-1β and 

IL-6 were significantly (p<0.05) increased following As, 

PS-MPs and As + PS-MPs treatment, as matched with the 

control. However, the differences in the levels of these 

indices were insignificant in the As and PS-MPs treated 

groups. However, As + PS-MPs co-exposed group 

exhibited the highest levels of these markers that were 

significantly (p<0.05) different from the other groups. This 

suggests that As + PS-MPs co-treated group was most the 

affected one. 

Discussion 

The level of As content of natural water bodies is largely 

dependent on geological composition, as well as the level 

of pollution [31]. The results of current experiment 

revealed that As and PS-MPs exposure reduced RBCs 

count and hemoglobin concentration along with increasing 

WBCs count. Pedlar et al., [32] reported that As exposure 

produced anemic conditions in the fish. It has been 

documented that, heavy metal exposure decreased the 

number of RBCs in fish [33].  
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Figure 1: Effect of As and PS-MPs are shown on (a) SOD, (b) GST and (c) CAT. Different superscripts above the bar show 

that significant differences are present. 

 

 
Figure 2: Effect of As and PS-MPs are shown on (a) TBARS, and (b) ROS. Different superscripts above the bar show that 

significant differences are present. 
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Figure 3: Effect of As and PS-MPs are shown on (a) ALT, and (b) ALP. Different superscripts above the bar show that 

significant differences are present. 

 

 

Figure 4: Effect of As and PS-MPs are shown on (a) IL-1β, and (b) IL-6. Different superscripts above the bar show that 

significant differences are present. 

Moreover, As exposure also reduced the levels of 

hemoglobin and packed cell volume of L. rohita [34]. 

Leucocytes are engaged in the modulation of 

immunological function within most organisms and the 

WBC increase of stressed animals signifies a protective 

reaction towards stress [35]. The significantly decreased 

levels of RBCs, and hemoglobin and increased WBCs in 

As+PS-MPs co-treated group show that it deleteriously 

impacted the hematological parameters of fish. 

Exposure to As and PS-MPs decreased the antioxidant 

activities and increased the levels of TBARS and ROS. 

SOD, and CAT are three key enzymes of first line defense 

mechanism that directly assists to degrade harmful ROS. 

Enzyme SOD acts through catalyzing the dismutation of 

toxic superoxide anion (O
2-

) to molecular oxygen (O2) and 

less toxic hydrogen peroxide (H2O2). This H2O2 is removed 

subsequently by the combined action of CAT and 

glutathione peroxidase (GPx). These enzymes acts through 

catalyzing reduction of H2O2 to harmless products. GPx can 

also act against other peroxides [36]. GST is another 
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antioxidant enzyme which is involved in detoxification and 

neutralization of ROS [37]. Method of assessing the 

oxidative stress levels have been extensively used in studies 

on mechanisms of environmental toxicity as well as 

ecotoxicity towards living organisms under exposure of 

contaminants [38]. Oxidative stress could be quantified 

directly by the production of free radicals, indirectly by the 

defense against the reactive species by antioxidants and by 

determining the end-products of oxidative damage [39]. 

TBARS are the markers of lipid peroxidation and oxidative 

stress [40]. It was revealed that As and PS-MPs co-

exposure produced enhanced toxic effects as evidenced by 

significantly compromised antioxidant levels and increased 

ROS and TBARS levels. 

In the current research, exposure to As and PS-MPs 

increased the levels of hepatic function markers. Moreover, 

ALT, and AST enzymes are present in maximum number 

of fish organs including heart, skeletal muscle, kidney, 

pancreas, spleen, erythrocyte, brain, liver and gill [41]. 

Upon damage of these tissues or cells, particularly of liver 

through disease or injury, AST as well as ALT are released 

and subsequently invade into the blood stream [42]. The 

notably higher levels of liver markers in As + PS-MPs co-

exposed group showed that they significantly impacted the 

hepatic function and damaged the liver. 

Our results indicated that as a result of AS and PS-MPs 

exposure, there was a rise in pro-inflammatory cytokine 

levels (IL-1β, and IL-6), which resulted in hepatic toxicity 

in L. rohita. Thus, upregulation of pro-inflammatory 

cytokines can be supplemented with a rise in anti-

inflammatory cytokine levels to trigger the immune 

response as well as keep the microenvironment homeostatic 

[43]. IL-1β is triggered in the condition of organ damage, 

pain and inflammation and it is a marker of inflammatory 

response [44]. Moreover, IL-6 is another marker of 

inflammation and its elevated levels are found in case of 

inflammation due to multiple reasons, including metabolic 

diseases or toxicity [45]. It was revealed that, PS-MPs and 

As co-exposure upsurged the levels of IL-1β, and IL-6, 

showing marked inflammation in the hepatic tissues of L. 

rohita. 

Conclusion: In conclusion, As and PS-MPs co-exposure 

significantly damaged the hepatic tissues of L. rohita. Their 

combined treatment enhanced the hazardous effects of As 

and lead to hematological impairments in the fish. 

Moreover, they also disturbed the activities of antioxidant 

enzymes and induced oxidative stress. Additionally, PS-

MPs and As co-exposure increased the levels of hepatic 

function markers and inflammatory markers. Therefore, As 

and PS-MPs co-treatment may cause hepatic damage in L. 

rohita due to their ability to cause oxidative stress and 

inflammation in the body of fish. 
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