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R E V I E W    A R T I C L E

 

ǀ  
A B S T R A C T 

 
 

   Artificial Intelligence (AI) is rapidly transforming the landscape of medical diagnostics, 

offering unprecedented accuracy, speed, and efficiency in disease detection and deci-

sion-making. From image-based analysis in radiology and pathology to predictive ana-

lytics in genomics and personalized medicine, AI technologies, particularly machine 

learning and deep learning, are being increasingly integrated into clinical workflows. 

These innovations have shown promise in enhancing diagnostic precision, reducing 

human error, and improving patient outcomes across a wide spectrum of diseases, in-

cluding cancer, cardiovascular conditions, and infectious diseases. Despite these ad-

vancements, the integration of AI into healthcare faces several challenges. Concerns 

around data privacy, model transparency, algorithmic bias, and clinical validation must 

be addressed to ensure ethical and reliable deployment. Furthermore, the lack of stand-

ardized protocols, regulatory frameworks, and interdisciplinary collaboration hinders 

the seamless adoption of AI in routine diagnostics. This paper explores the current state 

of AI in diagnostics, highlights ground-breaking applications already in use, and dis-

cusses key limitations that need to be overcome. It also offers insight into future pro-

spects, including explainable AI, integration with wearable technologies, and the poten-

tial for AI to support real-time decision-making in point-of-care settings. With contin-

ued innovation and responsible implementation, AI holds the potential to revolutionize 

diagnostic medicine and redefine the future of healthcare. 
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Introduction 
Definition and scope of Artificial Intelligence (AI) in 
healthcare 

Healthcare costs are expected to fall as a result of AI. 

Clinical decision-support systems, handy tools that help 

doctors figure out diagnoses and choose treatments, are 

probably the most visible form of artificial intelligence you 

will find in daily hospital work. AI-based CDSSs employ 

AI models trained on data from patients that are compatible 

with the use-case at hand, whereas conventional CDSS 

match the characteristics of individual patients to an 

existing knowledge base [1]. According to research, AI 

algorithms have the ability to outperform humans at certain 

analytical tasks (like imaging pattern recognition, for 

instance [2].  

Significance of AI in laboratory diagnostics 

Healthcare AI technology includes both machine learning 

(ML) and non-ML approaches. Algorithms are used in 

machine learning, a subset of AI, to analyze datasets for 

tasks like detection and classification. This makes it 

possible to autonomously recognize patterns in a variety of 

domains [3]. Non-ML techniques, on the other hand, 

concentrate on analysis and prediction without the use of 

adaptive algorithms and rely on deterministic models and 
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conventional statistical techniques. AI is also being utilized 

more and more in laboratory medicine for tasks like white 

blood cell differentials and analyzing antinuclear antibody 

(ANA) patterns [4]. 

Objectives of the review 

This review article aims to provide a comprehensive 

analysis of the role of AI in transforming diagnostics, 

highlighting its current applications, associated challenges, 

and future prospects. It explores how AI-driven 

technologies, including machine learning, deep learning, 

and natural language processing, are enhancing diagnostic 

accuracy, efficiency, and decision-making across various 

medical disciplines. Additionally, the review examines the 

integration of AI in imaging, pathology, genomics, and 

point-of-care testing, emphasizing its impact on early 

disease detection and personalized medicine. Key 

challenges such as data privacy, ethical considerations, 

algorithmic bias, and the need for regulatory frameworks 

are critically discussed. Finally, this article outlines 

emerging trends and future directions, including the role of 

AI in precision diagnostics, automation, and its potential to 

bridge global healthcare disparities. Through this review, 

we aim to provide insights into the evolving landscape of 

AI in diagnostics, offering perspectives for researchers, 

clinicians, and policymakers on its responsible and 

effective implementation in healthcare. 

Applications of AI in Medical Laboratory Technology 
AI in Diagnostics 

Computer vision and time series analysis are some of the 

major types into which AI interpretation tasks can be 

divided [5]. In order to generate numerical or symbolic 

representations of concepts encoded in the image, computer 

vision algorithms synthesize (or "convolute") high-

dimensional image data. It is believed that this procedure 

imitates how people recognize patterns and derive 

significant characteristics from pictures. In clinical 

diagnostics, early computer-vision tools aimed at medical 

scans-positron emission tomography images, magnetic 

resonance images-and pathology slides such as 

histopathological samples quickly became the first AI-

fueled products the US Food and Drug Administration 

(FDA) approved. These first imaging apps include 

automatic cardiac MRI blood-flow measurement, 

straightforward echocardiogram ejection-fraction 

calculations, radiograph-based lung-nodule spotting and 

volume estimates, mammograms that flag and grade breast 

density, CT scans that spot strokes, bleeds, and other brain 

issues, plus turn-key checks for diabetic retinopathy from a 

routine dilated exam [6][7][8]. 

The processing of temporal data to predict future 

observations, identify anomalies within a sequence of 

observations, or predict the discrete state generating a 

sequence of observations (e.g., normal heart beat versus 

arrhythmia) is known as time series analysis. Time series 

AI algorithms can be used in clinical diagnostics on 

medical equipment that generate continuous output signals; 

electrocardiograms are one particularly popular area of 

study. AI used on ECGs can identify and categorize cardiac 

contractile failure, blood chemistries associated with 

aberrant cardiac rhythms, and arrhythmias, particularly 

atrial fibrillation [9][10][11]. When researchers feed raw 

DNA sequences into these AI time-series tools, the 

programs often spotlight tiny but indicative features that 

hint at where splicing happens, mark vast control regions, 

and even point toward the products each gene ultimately 

codes [12]. 

Automated image analysis 

Digital pathology, also known as automated image 

analysis, is the process of capturing, storing, and 

interpreting pathologic specimens utilizing digital file 

formats [13][14]. In early iterations of digital pathology, 

static images taken by cameras mounted on microscopes 

were transmitted between distant locations. Later, robotic 

telepathology evolved from digital pathology, where a 

pathologist at a distance operated a robotic stage and 

observed specimens in real time. Full-slide imaging is a 

more recent development in digital pathology that uses 

digital slide scanners to produce digital images of full 

histologic sections. After digitization, the image can be 

seen using a computer interface that resembles a light 

microscope's instruments [15]. 

AI algorithms for infectious disease detection 

Smith began with a CNN (Convolutional Neural Network) 

named Inception 3.0, which had been trained by Google to 

identify common objects and had only been retrained in the 

last layers to identify a number of common Gram stain 

morphologies in positive blood culture smears, including 

Gram-negative rods, Gram-positive cocci in clusters, and 

Gram-positive cocci in chains [16]. CNN was trained using 

a total of 100,000 classified picture crops producing a 

composite whole slide classification accuracy of 92.5% and 

a crop classification accuracy of about 95% across all Gram 

stain categories. The ultimate objective, though, is to 

execute interpretation with >99% accuracy, which is 

equivalent to that of a proficient microbiologist [17]. 

CNNs' ability to improve accuracy as training sets grow in 

size, which can include millions of photos, is one of their 

key characteristics. 

AI has a lot of potential for use in parasite diagnostics in 

addition to bacterial smear observation; malaria has 

received nearly all of the published work to date. Looking 

at stained thick and thin blood slides under the microscope 

remains the best way to spot malaria parasites and tell 

which species is present. Several studies have looked into 
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different AI models to automate image interpretation 

because there aren't many skilled people in malaria-

endemic areas. Frequently, when data is gathered and 

analyzed in a research setting, these models attain 

sensitivity and specificities of >95% per image [18][19]. 

Specimen tracking and laboratory automation systems 
Any errors that occur before a specimen is tested, whether 

during collection, labeling, transportation to a laboratory, 

laboratory processing, or storage, are referred to as 

preanalytical errors [20]. Preanalytical error rates range 

significantly between regions and facilities, primarily due 

to variations in standards, resources, and control of 

processes. Barcode-based labeling systems have been used 

to guarantee that employees follow protocols and increase 

accuracy in a range of operations [21]. It has been 

demonstrated that the development and implementation of 

barcode systems that are intended to complement a 

particular workflow significantly lowers laboratory 

specimen misidentifications while also boosting protocol 

adherence and diagnostic effectiveness in both community-

based research in developing nations and hospital-based 

laboratory settings [22][23]. 

AI for error reduction and quality control 

Recent developments have made it easier to make use of 

datasets from many sources to train machine learning 

models collaboratively without exchanging data, which 

might save researchers a great deal of time and effort 

compared to manually harmonizing data. In a 2017 blog 

post, Google introduced Federated Learning, a method that 

enables a centralized machine learning model to be 

concurrently trained across multiple dispersed clients 

without requiring data exchange. One great advantage is 

that you don’t have to worry about manually merging and 

harmonizing healthcare data from various independent 

institutions into a single standardized dataset. This is 

because data sharing is avoided, and each healthcare 

institution (or client) can simply use its own isolated 

dataset to train the joint model [24]. 

Fuzzy Logic has recently been successfully used to train a 

clinical decision support algorithm for COVID-19 

prediction utilizing electronic health records and chest X-

rays from numerous healthcare facilities. Using information 

gathered from 20 different healthcare facilities, a multi-

modal neural network model from Florida, called 

Electronic medical record chest X-ray Artificial 

Intelligence Model (EXAM), was developed to predict the 

future oxygen requirements and the 24- or 72-hour 

prognosis for COVID-19 patients. Remarkably, this was 

achieved without needing to harmonize or share data. Each 

"round" of model training involved training the models 

locally for one epoch using the servers and private data of 

each institution, and then transmitting the modified model 

parameters for each local model back to a central server for 

aggregation. EXAM was able to generalize and attain an 

average improvement in AUC of 16% over the models 

trained separately at each location thanks to the FL method, 

which made it possible to handle vast amounts of data 

[25][26]. 

Predictive Analytics 

Predictive algorithms, often referred to as clinical 

prediction models, play a crucial role in diagnosis and 

prognosis by helping to identify individuals who are more 

likely to have a particular disease [27]. In today's world of 

personalized medicine, predictive algorithms are used to 

guide patients and inform clinical care decisions by 

focusing on the unique characteristics of each individual, 

rather than relying on general population averages [28]. 

AI in Biomarker discovery 
In particular, machine learning (ML) and AI techniques 

have proven effective in analyzing various data modalities 

for dementia-related disorders and in investigating various 

biomarkers. These methods are essential for thoroughly 

analyzing intricate and multimodal data sets in order to find 

emerging patterns and possible biomarkers [29]. The type 

of biomarker determines how AI techniques are applied, 

and these techniques are typically categorized by algorithm 

learning style and input data. When it comes to biomarker 

discovery data, supervised learning typically employs input 

data that has a known classification, such as illness status 

or an associated endophenotype. Regression, Support 

Vector Machines (SVMs), random forests, and 

sophisticated deep learning techniques are all examples of 

supervised learning. To investigate data and comprehend 

structure, unsupervised learning techniques are frequently 

employed. These techniques include dimensional reduction 

techniques or clustering algorithms to stratify a data set 

based on feature similarity or to lower the complexity of 

the data set [30]. A receiver-operating characteristic (ROC) 

curve is frequently used in targeted fluid-based biomarker 

development to evaluate the performance and accuracy of 

new biomarkers during validation phases. 

Machine learning models for risk prediction and prognosis. 
The accuracy of cancer prediction outcome has greatly 

increased by 15%-20% in recent years, with the 

deployment of ML approaches. Machine Learning is a 

fascinating branch of Artificial Intelligence that tackles the 

challenge of learning from data samples and ties it all back 

to the broader idea of making inferences [31]. Every 

learning algorithm can be broken down into two key stages: 

first, figuring out the unknown relationships within a 

system based on the data we have, and second, using those 

insights to predict how the system will behave in the future 

[32]. 

AI in Personalized Medicine 
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Traditional AI methods typically involve training an 

algorithm using population data to identify statistical 

patterns. These patterns can then be applied to diagnose and 

treat individuals based on their unique demographics and 

medical history [32]. CURATE.AI is a cutting-edge 

platform that harnesses the power of AI to map how 

different levels of treatment (inputs) relate to specific 

health outcomes (outputs) for each individual, all based on 

their unique data. To create a personalized CURATE.AI 

profile for a patient, we analyze how varying doses of 

medication correlate with measurable results. As the 

patient’s condition changes over time, whether through 

disease progression or regression, new medications, dose 

adjustments, or other medical interventions, the CURATE. 

AI profile adapts accordingly, ensuring that the care 

provided is always tailored to their evolving needs 

throughout the entire treatment journey. The CURATE. AI 

technique has been proven effective for optimizing single-

drug therapies, combination treatments, cancer care, and 

immunosuppressive therapies, as well as for both 

retrospective and prospective dosage adjustments. A recent 

study has revealed that this approach can also be utilized 

for cognitive training, paving the way for new applications 

[33][34]. 

Integrating AI with literary scientific data 

AI greatly reduces the time spent on literature searches, 

study evaluation, data extraction, and evidence aggregation. 

This efficiency enables researchers and doctors to 

concentrate more on analysis and interpretation, expediting 

the speed of scientific discovery and therapeutic decision-

making [35]. AI generates consistent judgments and 

appraisals while minimizing error by humans and 

subjective bias. Consistency is especially critical in 

systematic reviews and guideline formulation, because 

discrepancies in evaluation might result in incompatible 

conclusions and recommendations [36]. AI can process vast 

amounts of data, making it possible to keep up with the 

rising quantity of scientific research. This scalability is 

essential for thorough systematic reviews and for keeping 

clinical guidelines up to date [37]. 

Key Technologies Driving AI in Laboratories 

Machine learning and deep learning algorithms 

Machine learning is being harnessed to predict test results 

based on other available data, helping to cut down on 

unnecessary testing. By analyzing retrospective, integrated 

data sets that include relevant lab values, patient 

demographics, and clinical labels from diagnosis codes or 

provider notes, researchers are exploring the clinical 

significance of different components in multianalyte panel 

tests. This is especially true for tests related to specific 

organ systems, like the liver panel, or physiological 

processes, such as the iron deficiency panel [38][39]. When 

it comes to multianalyte tests, other researchers have also 

explored ways to gauge the diagnostic value of a test by 

looking at the results of related tests. For instance, Zhang 

and colleagues found that a patient's history of cancer, 

along with Complete Blood Count (CBC) and differential 

test results, can help predict whether the findings from 

peripheral blood flow cytometry will be abnormal. This 

approach could potentially cut down unnecessary use of 

peripheral blood flow cytometry by 35-50% [40][41]. 

Image recognition and computer vision for diagnostic 

imaging. 
These tools allow us to capture, interpret, analyze, and 

understand countless static and dynamic images in real 

time. This leads to a more accurate characterization of 

various diseases and helps in selecting patients for early 

treatments. Many of the diagnostic methods we have today 

can be invasive, costly, or overly complex to standardize in 

many parts of the world. That's where AI comes in as a 

practical solution, enabling us to identify a wide range of 

diseases at their early stages. This not only helps in 

defining better treatment plans and follow-ups but also 

reduces the medical costs associated with each patient. The 

combination of high-performance computing with machine 

learning (ML) enables the processing of large amounts of 

medical imagine data in order to provide accurate and 

efficient evaluations.  

CV (Computer Vision) works with a wide range of 

challenges, including picture categorization, identification 

of objects, detection, and reconstruction. It seeks to model 

and understand the visual environment by extracting usable 

information from digital images, which is typically 

motivated by challenging human vision tasks. Although it 

has existed since the 1960s, it remains an unresolved and 

difficult job, with computers just recently providing viable 

solutions in a variety of application domains. It is a 

multidisciplinary field that is closely related to artificial 

intelligence. AI is a vast field of computer science that 

seeks to develop automatic ways for solving issues that 

traditionally need human intelligence. ML, in turn, is a 

subset of AI that creates systems capable of automatically 

learning from data and experiences. The most successful 

CV systems were built using machine learning techniques 

[41][42]. 

Deep learning (DL) is a fascinating branch of machine 

learning that has gained a lot of traction in computer vision 

(CV) because of its impressive ability to tackle complex 

tasks related to analyzing and interpreting visual data. The 

"deep" in deep learning refers to neural networks that 

consist of multiple layers. In recent years, there has been an 

increasing interest in applying deep learning models to 

medical issues. Deep neural networks, for example, have 

demonstrated remarkable performance in skin lesion 
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classification tests. CNNs frequently outperform due to 

their enhanced segmentation performance, despite their 

reliance on vast amounts of training data [43]. 

Robotics in automated laboratory processes 

In manufacturing, automation is described as the 

technology that allows an operation to be completed 

without the need for human intervention. Humans may be 

present as observers or participants, but the procedure is 

self-driven. As a result, the degree of automation of a 

system is defined as the ratio of already automated 

processes to the overall number of all operations of the 

system. Automation speeds up the process of translating 

research findings into therapeutic applications [44]. 

Benefits of AI in Laboratory Medicine 
Enhanced accuracy and efficiency in diagnostic processes 

AI is fundamentally changing the field of diagnostic 

imaging in healthcare. This technique, which combines 

complex algorithms and machine learning, offers a 

significant step forward in the interpretation and 

application of medical imaging such as X-rays, MRIs, and 

CT scans. AI's function in diagnostic imaging is more than 

just automating operations; it fundamentally alters the 

approach to disease detection, making it more accurate and 

efficient [45]. Furthermore, artificial intelligence improves 

diagnostic accuracy. AI systems can spot patterns and 

irregularities in medical images that the human eye may 

miss. AI's efficacy in Enhanced Image Analysis is 

especially notable. It excels at detecting complicated 

patterns in medical images, identifying irregularities that 

are typically unnoticeable to the human eye, hence 

considerably increasing the accuracy of diagnoses in 

complex cases like cancer or neurological disorders 

[46][47][47][48[49]. 

Reduction in human error and turnaround time 

Traditional methods of interpreting images can take a lot of 

time and are often susceptible to human mistakes. 

However, AI can interpret and analyze images considerably 

faster, drastically lowering the time it takes to diagnose a 

patient. This quickness is especially important in 

emergency situations, where every second counts [46]. AI 

plays an important role in reducing human error. AI makes 

significant contributions in terms of efficiency and speed, 

substantially accelerating the process of evaluating medical 

images. This acceleration is crucial, not just for 

convenience, but for potentially life-saving situations 

where quick treatment decisions are required [50][51][52]. 

Cost-effectiveness in high-volume testing environments 

AI plays a huge role in making healthcare more cost-

effective. By boosting efficiency and accuracy, it cuts down 

on the need for repetitive scans and lowers the chances of 

misdiagnosis, ultimately helping to bring down overall 

healthcare costs. For instance, AI-powered convolutional 

neural networks (CNNs) not only matched the sensitivity of 

expert radiologists but also identified 8.4% of lung nodules 

that might have been missed in patients with complicated 

lung conditions. This advancement significantly boosts the 

speed and efficiency of diagnostic processes [50]. A recent 

study on the cost-effectiveness of caries detection 

highlighted how AI can swiftly process and analyze large 

volumes of data using advanced detection methods. This 

really showcased the significant time-saving advantages 

that AI brings to dental imaging analysis. The AI system 

notably cut down the time required for image 

interpretation, emphasizing the efficiency improvements in 

dental diagnostics [53][55].  

Improved patient outcomes through precision diagnostics 
One of the key advantages of AI is its ability to forecast. 

By shifting through previous data, AI can identify trends 

and potential risk factors, which allows for the early 

detection of diseases. The majority of health care providers 

believe that the introduction and substantial use of EHR 

will reduce operating costs, reduce error rates, and improve 

patient outcomes. EHRs: 1) increased the 

comprehensiveness of patient contacts, 2) supported patient 

queries, 3) minimized ambiguity due to illegible 

handwriting, and 4) strengthened doctors' confidence in the 

EHR system [56].  

Challenges and Limitations 

Data quality and availability (bias, inconsistency) 
Clinical research might rely on a single method at a central 

lab, but the findings from these studies won’t be truly 

useful unless all other methods align with that central lab 

approach. When we mix compromised medical advice into 

AI models that deal with patients who have test results that 

just don’t match up, it can lead to incorrect or unsuitable 

treatments [57][58]. 

Integration challenges with existing laboratory systems 
The performance of ML models offers a key difficulty in 

the field of AI. The quality of the data used has a 

significant impact on algorithm performance. The source of 

the training data plays a key influence in molding the future 

or intended use. When modeling with large datasets, 

concerns like inappropriate fitting and restricted data 

volume typically result in poor model performance 

[58]. Furthermore, ensuring uniformity in algorithm 

performance while using AI systems demands attentive 

mitigation of component failure.  

Different clinical centers frequently use different data 

collection and testing systems. The lack of open data access 

and data sharing platforms causes the formation of separate 

data repositories. As a result, prior to adopting AI-based 

analysis, it is critical to create specialized server software 

and standardize data interfaces. Mohn et al. study 

exemplifies this technique, as they improved the versatility 
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of current models across varied institutions by optimizing 

them with locally acquired data [59]. 

Ethical and regulatory concerns (data privacy, AI 
accountability) 

Ethical problems, such as accountability, privacy, and 

transparency, impede the mainstream implementation of 

artificial intelligence. It is critical to strengthen the 

framework for responsibility management and clearly 

define the roles and responsibilities of medical institutions, 

programmers, and medical specialists throughout the AI 

deployment process. Protecting patients' privacy can 

occasionally undermine the transparency and 

comprehensibility of artificial intelligence systems 

[60][61]. This occurs when data stays unavailable to the 

public or the complexities of ML model design are 

unknown. To address this limitation, a multi-center RF 

prognosis prediction model was developed to improve 

prognostic forecasts while protecting privacy. For example, 

AI bias is a technical challenge that can unintentionally 

lead to bias towards specific populations. Healthcare 

providers should focus more on lobbying for this 

technology while also addressing patients' emotional well-

being. 

Resistance to adoption due to lack of technical expertise 
While great progress has been achieved in the application 

of AI in medical laboratory exams, the requirement for 

computer science knowledge and the analysis of massive 

clinical data have limited its broader implementation [62]. 

A web-based poll on the use of AI, which included 

participants such as doctors (26%) and laboratory managers 

(22%), found a lack of specific AI understanding in the 

healthcare sector. This emphasizes the critical need for AI 

education to enable the application of AI into diagnostic 

methods. Regarding human-machine interaction, the 

significance for AI's advancement toward higher 

intelligence becomes clear [63]. 

Case Studies and Real-World Examples 
Applications of AI in automated blood tests and hematology 

analyzers 

Childhood Acute Lymphoblastic Leukemia (ALL) is a 

serious type of cancer and the leading cause of cancer-

related deaths in children. Unfortunately, about 20% of 

children who receive treatment for it end up relapsing. It's 

really important to anticipate relapses so we can effectively 

address the various risk groups. This helps us manage and 

plan follow-ups more efficiently. Pan et al. [64] developed 

a model to predict relapses in Acute Lymphoblastic 

Leukemia (ALL) using machine learning algorithms. This 

model helps categorize patients into different risk groups. 

In the process of selecting the best model, he utilized 103 

clinical variables to train four different classification 

algorithms: random forest (RF), decision tree, SVM and 

linear regression. These algorithms work together to 

differentiate between relapses and non-relapses across three 

defined risk categories: standard, intermediate, and high 

risk. While Pan et al. created a model to forecast disease 

relapse, Hauser et al. [65] explored the potential of 

predicting Chronic Myeloid Leukemia (CML) before 

diagnosis by relying solely on CBC test results and 

machine learning algorithms like XGBoost and LASSO, 

analyzing data from 1,623 patients with confirmed CML 

status. The study took into account various factors, 

including laboratory CBC results, patient demographics 

such as age and gender, and details from patient 

encounters. To assess the predictive power of the most 

promising indicators, we employed a prospective feature 

selection process. The dataset was divided into seven 

groups, using the time of diagnosis as a baseline for 

patients, while the other six groups represented different 

time frames leading up to the diagnostic test. Interestingly, 

the selection of variables revealed different features to 

consider in the models, depending on the interval during 

which the data was collected. 

The outcome of the selected categories in conducted using 

a 10-fold cross-validation method across each of the 100 

training sets. However, it's important to note that this 

proposed approach falls short for internal validation, which 

actually requires a minimum of 50 repetitions. However, 

the selected data set in [65] was split into two clear groups: 

the train/validation group and the test group. While using 

this split-sample validation method is reasonable and 

justifiable in this case due to the large sample size, it can 

lead to some significant issues. There are many factors that 

need to be considered throughout the program. For 

example, because the sample split was done completely at 

random, there could have been significant patient 

imbalances in terms of predictor distribution and output. 

Furthermore, 20% was used for model evaluation, resulting 

in a potentially skewed appraisal of the model's outcomes.  

AI in cancer diagnostics through histopathological imaging 

Presently, latest advances in AI have opened new horizons 

for drastically changing the process using which cancer is 

identified and categorized. Different artificial intelligence 

systems are exponentially being employed to deliver 

information that is challenging for pathologists to classify 

[66][67]. For example, assessing immunohistochemical 

biomarkers, like Ki67 and PD-L1, accurately and 

objectively could involve quantifying cells, evaluating how 

they’re arranged spatially, as well as looking at aspects like 

their expression, density, and distribution patterns. AI can 

play a crucial role in spotting isolated tumor cells in lymph 

nodes that raise concerns for metastatic carcinoma, 

enhancing detection sensitivity and saving valuable time. 

Additionally, AI technologies can help standardize scoring 
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systems for certain tumors, like the Gleason score for 

prostate cancers or grading for breast cancer, where the 

morphological characteristics are represented along a 

spectrum of a continuous biological process [68]. One 

interesting use of AI search techniques is in content-based 

image retrieval (CBIR). This technology enables 

pathologists to find images that are similar to a specific 

image from a vast histopathology database. It's particularly 

beneficial for helping pathologists diagnose rare and 

complex cases they might face in their clinical work. The 

images retrieved from the database highlight similarities in 

related histological features, not just visual resemblance. 

Consequently, CBIR streamlines the process of delivering 

accurate diagnoses quickly, even for challenging cases 

[69]. 

AI systems used during the COVID-19 pandemic for testing 
and triage 

The CURIAL-1.0 artificial intelligence screening test 

effectively diagnosed patients who came to the emergency 

department with COVID-19. It did this by using simple 

blood tests, blood gas analysis, and vital signs collected 

within an hour of their arrival at the hospital. CURIAL-Lab 

is a specialized model that focuses on a unique set of 

routine blood tests, including FBC, urea, creatinine, 

electrolytes, LFTs, and CRP. It intentionally leaves out 

coagulation panels and blood gas tests, as these aren’t 

always performed universally and tend to offer less 

valuable information [70].  

Future Directions and Opportunities 

Development of explainable AI models to enhance trust 

Explainable AI is the ability of AI systems to provide 

human-readable explanations for their decisions and 

suggestions. It lets clinicians and patients to understand the 

elements that influence an AI model's output, building 

confidence and allowing informed decision-making. 

Explain ability is important in healthcare because it 

enhances patient safety, improves clinical decision-making, 

allows for successful collaboration between physicians and 

AI, and ensures ethical and legal compliance [71]. 

Integration of multi-omics data for comprehensive 
diagnostics. 

Disease identification and diagnosis are accelerated using 

artificial intelligence technology, imaging, molecular, and 

cellular data. The relationship of non-coding RNA 

(ncRNA) with diseases has been established, allowing 

scientists to investigate disease causes and, ultimately, 

finding medication for those diseases. Complicated 

disorders, such as cardiovascular disease, breast cancer, and 

lung cancer, are linked to aberrant ncRNA expression, 

especially lncRNAs. The computational methods focus on 

uncovering possible connections between ncRNA and 

diseases by leveraging biological data, including genomic 

locations and tissue specificity. Identifying these 

relationships helps to better understand the pathogenesis, 

diagnosis, and therapy of human diseases. Similarly, 

differential gene expression has been utilized to diagnose 

diseases [72]. 

Current methods for prediction of links between ncRNAs 

and disorders are divided into two categories: network-

based and machine-learning-based methods. The network-

based approaches make use of diverse networks, such as 

lncRNA-disease, lncRNA-miRNA, and miRNA-disease 

datasets with established relationships. Machine-learning 

methods, on the other hand, forecast probable associations 

by developing models that are trained using association 

data to enhance accuracy highlighted the need to combine 

clinical data, digital pathology, and genomic and 

transcriptomic profiles to better predict how patients will 

respond to breast cancer therapies. In a study called the 

multi-omics graph convolutional network (MOGONET), 

researchers introduced a supervised classification 

framework that leverages various types of multi-omics data 

for biomedical categorization [73]. A new model that 

integrates multiple omics data using a graph convolutional 

network (GCN) has been introduced to assess and 

categorize different cancer subtypes predicted miRNA-

disease connections that stem from lncRNA-miRNA 

interactions and convolutional networks [74]. There are 

also various machine learning methods like PLRPIM, 

DRPLPI, GPLPI, and GAE-LGA for predicting interactions 

among biomolecules, like lncRNA-protein interactions 

[75]. Some researchers have created innovative multi-

omics integration tools like CustOmics. This tool leverages 

deep learning to bring together complex, high-dimensional, 

and diverse data sets.  

Expansion of AI in point-of-care testing (POCT) 

Point-of-Care Testing (POCT) that is simple to use and 

integrates with medical records or a larger health 

surveillance system has the potential to significantly reduce 

disease burdens via home or self-testing. Patients who may 

delay getting medical care for a stigmatized ailment could 

do testing without having to report to a public health 

facility or physician's office. A modern example, using an 

autonomous machine learning approach, may detect real-

world latent viral diseases. This is done by withdrawing 

substantial data from social media, based on sentiment 

analysis [76]. 

Conclusion 

Artificial intelligence is reshaping the landscape of medical 

laboratory diagnostics, offering unprecedented 

advancements in accuracy, efficiency, and personalized 

medicine. By automating image analysis, optimizing 

workflows, and leveraging predictive analytics, AI is 

enhancing diagnostic capabilities while reducing human 
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error and turnaround time. Technologies such as machine 

learning, deep learning, and computer vision have 

revolutionized laboratory medicine, biomarker discovery, 

and tailored treatment strategies. Despite these promising 

developments, challenges remain, including issues of data 

quality, integration hurdles, ethical concerns, and resistance 

to adoption. Moving forward, the development of 

explainable AI models, integration of multi-omics data, and 

expansion into point-of-care testing will further elevate the 

role of AI in laboratory medicine. The continued evolution 

of AI-driven diagnostics holds great promise in delivering 

more precise, accessible, and efficient healthcare solutions. 
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