Mechanisms, Dissemination, Determinants, and Alternate Strategies for Addressing Antibiotic Activity and Resistance

Authors

  • Maria Muddassir M ISLAM MEDICAL COLLEGE GUJRANWALA Author https://orcid.org/0000-0002-1402-8245
  • Wajeeha Shozeb Sahiwal Medical College, Sahiwal. Pakistan Author
  • Ayesha Sajjad Amna Inayat Medical College, Lahore. Pakistan Author
  • Sadaf Munir Rehbar college of dentistry (RCoD), Lahore. Pakistan Author
  • Ahmad Basirat Tallaght University Hospital, Dublin. Ireland Author

Keywords:

antibiotics, antimicrobial, antibiotic resistance, bacteria

Abstract

The use of antibiotics is a commonly used therapeutic approach for the treatment of bacterial diseases in a variety of fields, such as human health, agriculture, cattle breeding, and fish aquaculture. How well antibiotics work depends on four different mechanisms of action, each of which is covered in detail in this review. Antibiotic resistance has become a major obstacle to treating bacterial illnesses, notwithstanding its effectiveness. Antibiotics are no longer effective because bacteria have evolved resistance mechanisms against them. There are several ways that antibiotic resistance can develop among bacteria, making previously vulnerable microorganisms resistant to antibiotics. The abuse of antibiotics by humans is one of several causes contributing to the growing antibiotic resistance dilemma. Alternative strategies put forth to lessen the escalation of antibiotic resistance are also highlighted in this review.

Downloads

Download data is not yet available.

References

. Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Gene Cells. 2013;18(4):266-77.

. Sodhi KK, Singh CK. Recent development in the sustain-able remediation of antibiotics: a review. Total Environ Res Themes. 2022;3:100008. doi:10.1016/j.totert.2022.100008

. Piddock LJ. Teixobactin, the first of a new class of antibi-otics discovered by iChip technology?. J Antimicrob Chemoth. 2015;70(10):2679-80. doi:10.1093/jac/ dkv175

. Dutta S, Sarkar R, Bordoloi KP, Deka C, Sonowal PJ. Bacteriophage therapy to combat antibiotic resistance: a brief review. Pharma Innov. 2021;10(5):389-94.

. Shree P, Singh CK, Sodhi KK, Surya JN, Singh DK. Bio-films: Understanding the structure and contribution to-wards bacterial resistance in antibiotics. Med Microecol. 2023;16:100084. doi:10.1016/j.medmic.2023.100084

. Svircev A, Roach D, Castle A. Framing the future with bacteriophages in agriculture. Viruses. 2018;10(5):218. doi:10.3390/v10050218

. Sriram A, Kalanxhi E, Kapoor G, Craig J, Balasubramani-an R, Brar S, et al. The State of the World’s Antibiotics 2021. Washington, DC: Center for Disease Dynamics, Economics, and Policy. 2021;8(2):30–4.

. González Ronquillo M, Angeles Hernandez JC. Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods. Repositrio Institucional. 2017; http://hdl.handle.net/20.500.11799/79754

. Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, et al. The architecture of the Gram-positive bacterial cell wall. Nature. 2020; 582(7811):294-7. doi:10.1038/s41586-020-2236-6

. Wierup M. The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and usage of antimicrobials. Microb Drug Resist. 2001;7(2):183-90. doi:10.1089/10766290152045066

. Dawood MA, Koshio S, Esteban MÁ. Beneficial roles of feed additives as immunostimulants in aquaculture: a re-view. Reviews in Aquaculture. 2018; 10(4):950-74. doi:10.1111/raq.12209

. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobi-al resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. doi:10.1016/S0140-6736(21)02724-0

. Romandini A, Pani A, Schenardi PA, Pattarino GA, De Giacomo C, Scaglione F. Antibiotic resistance in pediatric infections: global emerging threats, predicting the near fu-ture. Antibiotics. 2021;10(4):393. doi:10.3390/antibiotics10040393

. Biondo C. Bacterial antibiotic resistance: the most criti-cal pathogens. Pathogens. 2023;12(1):116. doi:10.3390/pathogens12010116

. Zhou G, Shi QS, Huang XM, Xie XB. The three bacterial lines of defense against antimicrobial agents. Int J Mol Sci. 2015;16(9):21711-33. doi:10.3390/ ijms160921711

. Kang HK, Park Y. Glycopeptide antibiotics: Structure and mechanisms of action. J Bacteriol Virol. 2015;45(2):67-78. doi:10.4167/jbv.2015.45.2.67

. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, et al. Molecular mechanisms of antibiotic resistance revisited. Nature Rev Microbiol. 2023;21(5):280-95. doi:10.1038/s41579-022-00820-y

. Džidić S, Šušković J, Kos B. Antibiotic resistance mech-anisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol. 2008;46(1):11.

. Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm. 2023;5:100129. doi:10.1016/j.bioflm.2023.100129.

. Hirsch J, Klostermeier D. What makes a type IIA topoi-somerase a gyrase or a Topo IV?. Nucleic Acids Res. 2021;49(11):6027-42. doi:10.1093/nar/gkab270

. Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotech-nol. 2009;2(1):40-61. doi:10.1111/j.1751-7915.2008. 00063.x

. Hasan CM, Dutta D, Nguyen AN. Revisiting antibiotic resistance: mechanistic foundations to evolutionary out-look. Antibiotics. 2021;11(1):40. doi:10.3390/ antibiot-ics11010040

. Patel Y, Soni V, Rhee KY, Helmann JD. Mutations in rpoB that confer rifampicin resistance can alter levels of peptidoglycan precursors and affect β-lactam susceptibil-ity. Mbio. 2023;14(2):e03168-22.

. Varela MF, Stephen J, Lekshmi M, Ojha M, Wenzel N, Sanford LM, et al. Bacterial resistance to antimicrobial agents. Antibiotics. 2021;10(5):593. doi:10.3390/ antibi-otics10050593

. Premlatha M. Microbial resistance to antibiotics. In-Bacterial Adaptation to Co-Resistance. Singapore: Springer Singapore. 2019;pp.61-80. doi:10.1007/978-981-13-8503-2_4

. Sodhi KK, Singh CK, Kumar M, Singh DK. Whole-genome sequencing of Alcaligenes sp. strain MMA: in-sight into the antibiotic and heavy metal resistant genes. Front Pharmacol. 2023;14:1144561. doi:10.3389/fphar.2023. 1144561

. Ohmagari N. Antimicrobial resistant bacteria. Respir. Circulation. 2014;62(3):279-83.

. Tacconelli EC, Cataldo MA, Dancer SJ, De Angelis G, Falcone M, Frank U, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug‐resistant Gram‐negative bacte-ria in hospitalized patients. Clin Microbiol Infect. 2014;20:1-55. doi:10.1111/1469-0691.12427

. Garcia-Graells C, Antoine J, Larsen J, Catry B, Skov R, Denis O. Livestock veterinarians at high risk of acquiring methicillin-resistant Staphylococcus aureus ST398. Epi-demiol Infect. 2012;140(3):383-9. doi:10.1017/S0950268811002263

. Acharya KP, Wilson RT. Antimicrobial resistance in Nepal. Front. Med. 6: 105 [Internet]. 2019. doi:10.3389/fmed.2019.00105

. Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D. Participants of the 3rd World Healthcare-Associated Infections Forum. Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control. 2012;1:1-3. doi:10.1186/2047-2994-1-11

. Machowska A, Stålsby Lundborg C. Drivers of irrational use of antibiotics in Europe. Int J Environ Res Public Health. 2019;16(1):27. doi:10.3390/ijerph16010027

. Om C, Daily F, Vlieghe E, McLaughlin JC, McLaws ML. "If it's a broad spectrum, it can shoot bet-ter": inappropriate antibiotic prescribing in Cambodia. Antimicrob Resist Infect Control. 2016;5:58. doi: 10.1186/s13756-016-0159-7

. Thakolkaran N, Shetty AV, D’Souza ND, Shetty AK. Antibiotic prescribing knowledge, attitudes, and practice among physicians in teaching hospitals in South India. J Family Med Primary Care. 2017;6(3):526-32. doi:10.4103/2249-4863.222057

. Tebano G, Mouelhi Y, Zanichelli V, Charmillon A, Fougnot S, Lozniewski A, et al. Selective reporting of an-tibiotic susceptibility testing results: a promising antibiotic stewardship tool. Expert Rev Anti-infect Ther. 2020;18(3):251-62. doi:10.1080/14787210.2020.1715795

. Piddock LJ. Teixobactin, the first of a new class of anti-biotics discovered by iChip technology?. J Antimicrob Chemoth. 2015;70(10):2679-80. doi:10.1093/jac/ dkv175

. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep learning approach to antibiotic discovery. Cell. 2020; 180(4):688-702. doi:10.1016/j.cell.2020.01.021

. Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, et al. Computational identification of a sys-temic antibiotic for gram-negative bacteria. Nature Mi-crobiol. 2022; 7(10):1661-72. doi:10.1038/s41564-022-01227-4

. Tanday S. Resisting the use of antibiotics for viral infec-tions. Lancet Respir Med. 2016;4(3):179. doi:10.1016/S2213-2600(16)00060-6

. McDevitt D, Rosenberg M. Exploiting genomics to dis-cover new antibiotics. Trend Microbiol. 2001;9(12):611-7. doi:10.1016/S0966-842X(01)02235-1

. Melander RJ, Melander C. The challenge of overcoming antibiotic resistance: an adjuvant approach?. ACS Infect Dis. 2017;3(8):559-63. doi:10.1021/ acsinfecdis.7b00071

. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. doi:10.3389/fchem. 2018.00360

. Singh CK, Sodhi KK. The emerging significance of na-nomedicine-based approaches to fighting COVID-19 var-iants of concern: a perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. Front Nano-technol. 2023;4:1084033. doi:10.3389/fnano.2022.1084033

. Gupta PD, Birdi TJ. Development of botanicals to com-bat antibiotic resistance. J Ayurveda Integrative Med. 2017;8(4):266-75. doi:10.1016/j.jaim.2017.05.004

. Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, Abdo M, et al. Antibiotic action and resistance: up-dated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2024;14:1305294.

. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Saint peter, hospital family, and medicine resi-dency. England: Fish. 2016.

. Yuan Y, Wang L, Li X, Tan D, Cong C, Xu Y. Efficacy of a phage cocktail in controlling phage resistance devel-opment in multidrug resistant Acinetobacter baumannii. Virus Res. 2019;272:197734. doi:10.1016/j.virusres.2019. 197734

. Tanday S. Resisting the use of antibiotics for viral infec-tions. Lancet Respirat Med. 2016;4(3):179. doi:10.1016/S2213-2600(16)00060-6

. Darj E, Newaz MS, Zaman MH. Pharmacists’ perception of their challenges at work, focusing on antimicrobial re-sistance: a qualitative study from Bangladesh. Glob Health Act. 2019;12(1):1735126. doi:10.1080/16549716.2020.1735126

. Weinstein RA. Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. Emerg Infect Dis. 2001;7(2):188. doi:10.3201/eid0702.010206

. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6:1-8. doi:10.1186/s13756-017-0208-x

Downloads

Published

15-05-2025

How to Cite

1.
Mechanisms, Dissemination, Determinants, and Alternate Strategies for Addressing Antibiotic Activity and Resistance. Chron Biomed Sci [Internet]. 2025 May 15 [cited 2025 Jun. 14];2(2):PID49. Available from: https://cbsciences.us/index.php/cbs/article/view/49