Artificial Intelligence in Medical Laboratory Technology: A Game Changer for Quality Control & Compliance

Authors

  • Muhammad Huzaifa University of Central Punjab, Lahore Author
  • Nimra Jawad University of Central Punjab, Lahore Author
  • Farhan Rasheed Ammer ud Din Medical College/Post Graduate Medical Institute, Lahore Author
  • Ruqia Arif University of Central Punjab, Lahore Author
  • Ahsan Ali University of Lahore Author
  • Iqra Jamil University of Central Punjab, Lahore Author

Keywords:

quality control, , quality assurance, Artificial Intelligence, Machine Learning

Abstract

The coordination of Artificial Intelligence (man-made intelligence) in clinical research facility innovation has changed the scene of Quality Control (QC) and Quality Assurance (QA). This survey article investigates the uses of man-made intelligence in improving QC and QA in clinical research centers, including prescient support, constant information examination, high level picture examination, and blockchain innovation. The advantages of computer-based intelligence fueled QC and QA, like superior exactness, accuracy, and effectiveness, as well as the difficulties and impediments of carrying out artificial intelligence in clinical research facilities will be focused accordingly. Moreover, the job of research facility experts in embracing man-made intelligence innovation and guaranteeing the respectability of lab results will also be high-lightened. This survey plans to give a complete outline of the present status of artificial intelligence in clinical lab QC and QA, featuring its capability to reform the field and work on understanding results.

Downloads

Download data is not yet available.

References

[1]. Fatima K, Haroon H, Laraib I, Jabbar E, Yousaf F, Jamil I. Integrating rapid diagnostics, AI technologies, and om-ics approaches for sepsis management and antimicrobial stewardship. J Med Health Sci Rev. 2025;2(2):6084-101.

[2]. Rawlinson WD. 19th Annual Scientific Meeting, College of Pathologists, Academy of Medicine of Malaysia: Pa-thology and Laboratory Medicine: Current, Advance-ment and Emerging Trends. Malays J Pathol. 2022;44(2):303-64.

[3]. Jagatheesaperumal SK, Rahouti M, Ahmad K, Al-Fuqaha A, Guizani M. The duo of artificial intelligence and big data for industry 4.0: Applications, techniques, challeng-es, and future research directions. IEEE Internet Things J. 2021;9(15):12861-85.

[4]. Leins DA, Haase SB, Eslami M, Schrier J, Freeman JT. Collaborative methods to enhance reproducibility and accelerate discovery. Digit Discov. 2023;2(1):12-27.

[5]. Eifert T, Eisen K, Maiwald M, Herwig C. Current and fu-ture requirements to industrial analytical infrastructure-part 2: smart sensors. Anal Bioanal Chem. 2020;412(9):2037-45.

[6]. Raisch S, Krakowski S. Artificial intelligence and man-agement: The automation-augmentation paradox. Acad Manage Rev. 2021;46(1):192-210.

[7]. Aminabee S. Emerging Technologies for Health Literacy and Medical Practice. Hershey: IGI Global; 2024. p. 240-62.

[8]. Addissouky TA, El Tantawy El Sayed I, Ali MMA, Wang Y, El Baz A, Elarabany N, et al. Shaping the future of cardiac wellness: exploring revolutionary approaches in disease management and prevention. J Clin Cardiol. 2024;5(1):6-29.

[9]. Moses JC, Adibi S, Wickramasinghe N, Nguyen L, Ange-lova M, Islam SMS. Non-invasive blood glucose monitor-ing technology in diabetes management: review. Mhealth. 2024;10:9.

[10]. Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial in-telligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog Mol Biol Transl Sci. 2022;190(1):57-100.

[11]. Chengoden R, Victor N, Huynh-The T, Yenduri G, Jha-veri RH, Alazab M, et al. Metaverse for healthcare: A survey on potential applications, challenges and future di-rections. IEEE Access. 2023;11:12765-95.

[12]. Ben Elmir W, Hemmak A, Senouci B. Smart platform for data Blood Bank management: Forecasting demand in blood supply chain using machine learning. Infor-mation. 2023;14(1):31.

[13]. Jo ES, Gebru T. Lessons from archives: Strategies for collecting sociocultural data in machine learning. InPro-ceedings of the 2020 conference on fairness, accountabil-ity, and transparency 2020;27:306-16.

[14]. Domínguez-Monferrer C, Fernández-Pérez J, De Santos R, Miguélez MH, Cantero JL. Machine learning approach in non-intrusive monitoring of tool wear evolution in mas-sive CFRP automatic drilling processes in the aircraft in-dustry. J Manuf Syst. 2022;65:622-39.

[15]. Mandal SM, Paul D. Automation and Basic Techniques in Medical Microbiology. New York: Springer US; 2022. p. 7-18.

[16]. Wang YT, Maes EM, Heinle L, Ruterbories K, Doktor S, Larsen M, et al. Integrity and efficiency: AbbVie’s jour-ney of building an integrated nonregulated bioanalytical laboratory. Bioanalysis. 2023;15(3):161-176.

[17]. Matthew UO, Kazaure JS, Amaonwu O, Adamu UA, Hassan IM, Kazaure AA, et al. Intelligent Data Analysis for COVID-19 Pandemic. Singapore: Springer; 2021. p. 27-53.

[18]. Boyar K, Pham A, Swantek S, Ward G, Herman G. Can-nabis Laboratory Fundamentals. Cham: Springer; 2021. p. 131-151.

[19]. Renner H, Becker KJ, Kagermeier TE, Grabos M, Eliat F, Günther P, et al. Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids. Front Mol Neurosci. 2021;14:715054.

[20]. Tyagi AK, Fernandez TF, Mishra S, Kumari S. Interna-tional conference on intelligent systems design and appli-cations. Cham: Springer; 2020. p. 1-18.

[21]. Obstfeld AE. Hematology and Machine Learning. J Appl Lab Med. 2023;8(1):129-144.

[22]. Herman DS, Rhoads DD, Schulz WL, Durant TJS. Artifi-cial Intelligence and Mapping a New Direction in Labora-tory Medicine: A Review. Clin Chem. 2021;67(11):1466-1482.

[23]. Wang YT, Maes EM, Heinle L, Ruterbories K, Doktor S, Larsen M, et al. Integrity and efficiency: AbbVie’s jour-ney of building an integrated nonregulated bioanalytical laboratory. Bioanalysis. 2023;15(3):161-176.

[24]. Matthew UO, Kazaure JS, Amaonwu O, Adamu UA, Hassan IM, Kazaure AA, et al. Intelligent Data Analysis for COVID-19 Pandemic. Singapore: Springer; 2021. p. 27-53.

[25]. Boyar K, Pham A, Swantek S, Ward G, Herman G. Can-nabis Laboratory Fundamentals. Cham: Springer; 2021. p. 131-151.

[26]. Malashin I, Masich I, Tynchenko V, Gantimurov A, Ne-lyub V, Borodulin A, et al. Machine learning in 3D and 4D printing of polymer composites: a review. Polymers. 2024 Nov 8;16(22):3125.

[27]. Khan J, Ishizaka A, Kheybari S. Risk assessment of per-ishable products supply chains amidst COVID-19 through multi-criteria visualization. IMA J Manag Mathematics. 2025 Apr;36(2):299-322.

[28]. Huang Z, Shen Y, Li J, Fey M, Brecher C. A survey on AI-driven digital twins in industry 4.0: Smart manufactur-ing and advanced robotics. Sensors. 2021;21(19):6340.

[29]. Ameen MU, Ashfaq M, Shahbaz F, Dilbar M, Ali A, Jamil I. Transforming histopathology with artificial intel-ligence: enhancing diagnosis, prognosis, and personalized care. Multidiscip Surg Res Ann. 2025;17;3(3):64-76.

[30]. Benzine A, Tamaazousti Y, Vadakkekalam S, Bala-krishnan S, Chraibi I, Ezzeddine D, et al. AI-Automated Codification-QC Model for Daily Drilling Reports. InAbu Dhabi International Petroleum Exhibition and Confer-ence 2024 Nov 4 (p. D041S154R001). SPE.

[31]. Ali A, Akram MQ, Rasheed F, Ali A, Jamil I. Revolution-izing Diagnostics with Artificial Intelligence: Current In-novations, Challenges, and Future Horizons. Chron Bio-med Sci. 2025;2(3):PID58-.

[32]. Deserno TM, Dugas M, Löbe M, Stausberg J. A Topical Collection on ICT for Health Science Research–EFMI Special Topic Conference. J Med Syst. 2021;45(7):70.

[33]. Kutty TS, Reddy TB. AI-Powered System for Water Leakage Monitoring: A Sustainable Solution. Intelligent Strategies for ICT: Proceedings of ICTCS 2024, Volume 5. 2025;1320:11.

[34]. Boda VV, Allam H. Automating Compliance in Healthcare: Tools and Techniques You Need. Int J Emerg Trends Computer Sci Info Technol. 2021;2(3):38-48.

[35]. Yaqoob I, Salah K, Jayaraman R, Al-Hammadi Y. Blockchain for healthcare data management: opportuni-ties, challenges, and future recommendations. Neural Comput Applicat. 2022;34(14):11475-90.

[36]. Angraal S, Krumholz HM, Schulz WL. Blockchain tech-nology: applications in health care. Circulation: Cardio-vasc Qual Outcomes. 2017;10(9):e003800.

[37]. Polzer S, Frahm M, Freundel M, Nebe K. AI literacy for laboratory professionals. J Educ Technol. 2022;303-334.

[38]. Ghazal TM, Hasan MK, Alshurideh MT, Alzoubi HM, Ahmad M, Akbar SS, et al. IoT for smart cities: Machine learning approaches in smart healthcare—A review. Fu-ture Internet. 2021;13(8):218.

[39]. Wilkes EH, Rumsby G, Woodward GM. AI in antimicro-bial susceptibility testing. Clin Chem. 2018;64(11):1586-1595.

[40]. Gasparin AT, Araujo CIF, Schmitt P. Computational pathology advancements. Sci Rep. 2022;12(1):10409.

[41]. Ahmad K, Ali A, Siddique M, Ali A, Jamil I. Revolution-izing drug discovery: the transformative role of artificial intelligence in modern medicine. KJMR. 2025;2(07):153-69.

[42]. Haleem A, Javaid M, Singh RP, Suman R, Rab S. Block-chain technology applications in healthcare: An over-view. Int J Intel Networks. 2021;2:130-9.

Downloads

Published

15-11-2025

How to Cite

1.
Huzaifa M, Jawad N, Rasheed DF, Arif R, Ali A, Jamil I. Artificial Intelligence in Medical Laboratory Technology: A Game Changer for Quality Control & Compliance. Chron Biomed Sci [Internet]. 2025 Nov. 15 [cited 2025 Dec. 17];2(4):PID61. Available from: https://cbsciences.us/index.php/cbs/article/view/61