Revolutionizing Diagnostics with Artificial Intelligence: Current Innovations, Challenges, and Future Horizons

Authors

  • Aima Ali University of Central Punjab, Lahore Author
  • Muhammad Qasim Akram Uslter university (Manchester Campus) Author
  • Prof. Dr Farhan Rasheed Ammer ud Din Medical College/Post Graduate Medical Institute, Lahore Author
  • Ahsan Ali University of Lahore Author
  • Iqra Jamil University of Central Punjab, Lahore Author

Keywords:

Artificial Intelligence, Clinical Decision, Healthcare Innovation, Medical Diagnostics, Machine Learning

Abstract

Artificial Intelligence (AI) is rapidly transforming the landscape of medical diagnostics, offering unprecedented accuracy, speed, and efficiency in disease detection and decision-making. From image-based analysis in radiology and pathology to predictive analytics in genomics and personalized medicine, AI technologies, particularly machine learning and deep learning, are being increasingly integrated into clinical workflows. These innovations have shown promise in enhancing diagnostic precision, reducing human error, and improving patient outcomes across a wide spectrum of diseases, including cancer, cardiovascular conditions, and infectious diseases. Despite these advancements, the integration of AI into healthcare faces several challenges. Concerns around data privacy, model transparency, algorithmic bias, and clinical validation must be addressed to ensure ethical and reliable deployment. Furthermore, the lack of standardized protocols, regulatory frameworks, and interdisciplinary collaboration hinders the seamless adoption of AI in routine diagnostics. This paper explores the current state of AI in diagnostics, highlights ground-breaking applications already in use, and discusses key limitations that need to be overcome. It also offers insight into future prospects, including explainable AI, integration with wearable technologies, and the potential for AI to support real-time decision-making in point-of-care settings. With continued innovation and responsible implementation, AI holds the potential to revolutionize diagnostic medicine and redefine the future of healthcare.

Downloads

Download data is not yet available.

References

. Higgins D, Madai VI. From bit to bedside: a practical framework for artificial intelligence product development in healthcare. Adv Intell Syst. 2020;2(10):2000052.

. Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. Jama. 2018;320(21):2199-200.

. Loh TP, Cervinski MA, Katayev A, Bietenbeck A, van Rossum H, Badrick T. Recommendations for laboratory informatics specifications needed for the application of patient-based real time quality control. Clin Chim Acta. 2019;495:625-9.

. Intra J, Taverna E, Sala MR, Falbo R, Cappellini F, Brambilla P. Detection of intestinal parasites by use of the cuvette-based automated microscopy analyser sediMAX®. Clin Microbiol Infect. 2016;22(3):279-84.

. Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-definition medicine. Cell. 2017;170(5):828-43.

. Retson TA, Besser AH, Sall S, Golden D, Hsiao A. Machine learning and deep neural networks in thoracic and cardiovascular imaging. J Thorac Imaging. 2019;34(3):192-201.

. Asch FM, Abraham T, Jankowski M, Cleve J, Adams M, Romano N, et al. Accuracy and reproducibility of a novel artificial intelligence deep learning-based algorithm for automated calculation of ejection fraction in echocardiography. J Am Coll Cardiol. 2019;73(9S1):1447.

. Le E, Wang Y, Huang Y, Hickman S, Gilbert F. Artificial intelligence in breast imaging. Clin. Radiol. 2019;74(5):357-66.

. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65-9.

. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat Med. 2019;25(1):70-4.

. Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA cardiology. 2019;4(5):428-36.

. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(3):535-48.

. Wang J, Cao H, Zhang JZ, Qi Y. Computational protein design with deep learning neural networks. Sci Rep. 2018;8(1):1-9.

. Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA, et al. Whole-genome sequencing of a healthy aging cohort. Cell. 2016;165(4):1002-11.

. Smith KP, Kang AD, Kirby JE. Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2018;56(3):e01521-17.

. Samuel LP, Balada-Llasat J-M, Harrington A, Cavagnolo R. Multicenter assessment of gram stain error rates. J Clin Microbiol. 2016;54(6):1442-7.

. Barry-Straume J, Tschannen A, Engels DW, Fine E. An evaluation of training size impact on validation accuracy for optimized convolutional neural networks. SMU Data Science Rev. 2018;1(4):12.

. Poostchi M, Ersoy I, McMenamin K, Gordon E, Palaniappan N, Pierce S, et al. Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy. J. Med. Imaging. 2018;5(4):044506.

. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Trans Res. 2018;194:36-55.

. Rajaraman S, Antani SK, Poostchi M, Silamut K, Hossain MA, Maude RJ, et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. 2018;6:e4568.

. Rajaraman S, Jaeger S, Antani SK. Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ. 2019;7:e6977.

. Plebani M. Quality indicators to detect pre-analytical errors in laboratory testing. The Clin Biochem Rev. 2012;33(3):85-8.

. Zarbo RJ, Tuthill JM, D'Angelo R, Varney R, Mahar B, Neuman C, et al. The Henry Ford Production System: reduction of surgical pathology in-process misidentification defects by bar code-specified work process standardization. J Clin Pathol. 2009;131(4):468-77.

. Connor NE, Manary MJ, Maleta K. Monitoring the adequacy of catch-up growth among moderately malnourished children receiving home-based therapy using mid-upper arm circumference in southern Malawi. Matern Child Health J. 2011;15(7):980-4.

. McMahan B, Ramage D. Federated learning: Collaborative machine learning without centralized training data. Google Research Blog. 2017;3.

. Dayan I, Roth HR, Zhong A, Harouni A, Gentili A, Abidin AZ, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nature Med. 2021;27(10):1735-43.

. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12-22.

. Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics: recalibrating expectations. Jama. 2018;320(1):27-8.

. Beam AL, Kohane IS. Big data and machine learning in health care. Jama. 2018;319(13):1317-8.

. Myszczynska MA, Ojamies PN, Lacoste AM, Neil D, Saffari A, Mead R, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020;16(8):440-56.

. Niknejad A, Petrovic D. Introduction to computational intelligence techniques and areas of their applications in medicine. Med Appl Artif Intell. 2013;51:201.

. Ngiam KY, Khor W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-73.

. Zarrinpar A, Lee D-K, Silva A, Datta N, Kee T, Eriksen C, et al. Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform. Sci Transl Med. 2016;8(333):333ra49.

. Lee D-K, Chang VY, Kee T, Ho C-M, Ho D. Optimizing combination therapy for acute lymphoblastic leukemia using a phenotypic personalized medicine digital health platform: Retrospective optimization individualizes patient regimens to maximize efficacy and safety. Slas Technology Sci Innov. 2017;22(3):276-88.

. Pantuck AJ, Lee DK, Kee T, Wang P, Lakhotia S, Silverman MH, et al. Modulating BET bromodomain inhibitor ZEN‐3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE. AI, an artificial intelligence platform. Advanc Ther. 2018;1(6):1800104.

. Kee T, Weiyan C, Blasiak A, Wang P, Chong JK, Chen J, et al. Harnessing CURATE. AI as a digital therapeutics platform by identifying N‐of‐1 learning trajectory profiles. Advanc Ther. 2019;2(9):1900023.

. Van Altena A, Spijker R, Olabarriaga S. Usage of automation tools in systematic reviews. Res Synth Methods. 2019;10(1):72-82.

. Hair K, Wilson E, Wong C, Tsang A, Macleod M, Bannach-Brown A. Systematic online living evidence summaries: emerging tools to accelerate evidence synthesis. Clin Sci. 2023;137(10):773-84.

. Lidbury BA, Richardson AM, Badrick T. Assessment of machine-learning techniques on large pathology data sets to address assay redundancy in routine liver function test profiles. Diagnosis. 2015;2(1):41-51.

. Zhang ML, Guo AX, Kadauke S, Dighe AS, Baron JM, Sohani AR. Machine learning models improve the diagnostic yield of peripheral blood flow cytometry. AJP. 2020;153(2):235-42.

. Richardson AM, Lidbury BA. Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. BMC Bioinformatics. 2013;14:1-8.

. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19(1):221-48.

. Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, et al. Deep learning for cardiac image segmentation: a review. Front Cardiovasc Med. 2020;7:25.

. Holland I, Davies JA. Automation in the life science research laboratory. Front Bioeng Biotechnol. 2020;8:571777.

. Najjar R. Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics. 2023;13(17):2760.

. Srivastav S, Chandrakar R, Gupta S, Babhulkar V, Agrawal S, Jaiswal A, et al. ChatGPT in radiology: the advantages and limitations of artificial intelligence for medical imaging diagnosis. Cureus. 2023;15(7):e41435.

. Ipp E, Liljenquist D, Bode B, Shah VN, Silverstein S, Regillo CD, et al. Pivotal evaluation of an artificial intelligence system for autonomous detection of referrable and vision-threatening diabetic retinopathy. JAMA Netw Open. 2021;4(11):e2134254-e.

. Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol. 2019;20(12):1645-54.

. Waldstein SM, Vogl W-D, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-Erfurth U. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA Ophthalmol. 2020;138(7):740-7.

. Abadia AF, Yacoub B, Stringer N, Snoddy M, Kocher M, Schoepf UJ, et al. Diagnostic accuracy and performance of artificial intelligence in detecting lung nodules in patients with complex lung disease: a noninferiority study. J Thorac Imaging. 2022;37(3):154-61.

. Yang X, Wang H, Dong Q, Xu Y, Liu H, Ma X, et al. An artificial intelligence system for distinguishing between gastrointestinal stromal tumors and leiomyomas using endoscopic ultrasonography. Endoscopy. 2022;54(03):251-61.

. Zhang Y, Cui J, Wan W, Liu J. Multimodal imaging under artificial intelligence algorithm for the diagnosis of liver cancer and its relationship with expressions of EZH2 and p57. Comput Intell Neuro. 2022;2022(1):4081654.

. Nam JG, Hwang EJ, Kim J, Park N, Lee EH, Kim HJ, et al. AI improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology. 2023;307(2):e221894.

. Park A, Chute C, Rajpurkar P, Lou J, Ball RL, Shpanskaya K, et al. Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open. 2019;2(6):e195600-e.

. Wang D, Xu J, Zhang Z, Li S, Zhang X, Zhou Y, et al. Evaluation of rectal cancer circumferential resection margin using faster region-based convolutional neural network in high-resolution magnetic resonance images. Dis Colon Rectum. 2020;63(2):143-51.

. van Schrojenstein Lantman M, van de Logt A-E, Thelen M, Wetzels JF, van Berkel M. Serum albumin measurement in nephrology: room for improvement. Nephrol Dial Transplant. 2022;37(10):1792-9.

. Tan K, Tang K, Putra A, Pu X, Huang S, Lee T, et al. An auto-perfusing umbilical cord blood collection instrument. ISA Trans. 2012;51(3):420-9.

. Mey F, Clauwaert J, Van Huffel K, Waegeman W, De Mey M. Improving the performance of machine learning models for biotechnology: The quest for deus ex machina. Biotechnol Adv. 2021;53:107858.

. DeYoung B, Morales M, Giglio S. Microbiology 2.0–A “behind the scenes” consideration for artificial intelligence applications for interpretive culture plate reading in routine diagnostic laboratories. Front Microbiol. 2022;13:976068.

. Mohn SF, Law M, Koleva M, Lee B, Berg A, Murray N, et al. Machine learning model for chest radiographs: Using local data to enhance performance. Can Assoc Radiol J. 2023;74(3):548-56.

. Alrefaei AF, Hawsawi YM, Almaleki D, Alafif T, Alzahrani FA, Bakhrebah MA. Genetic data sharing and artificial intelligence in the era of personalized medicine based on a cross‐sectional analysis of the Saudi human genome program. Sci Rep. 2022;12(1):1405.

. Koçak B, Cuocolo R, Dos Santos DP, Stanzione A, Ugga L. Must-have qualities of clinical research on artificial intelligence and machine learning. Balkan Med J. 2023;40(1):3.

. Paranjape K, Schinkel M, Hammer RD, Schouten B, Nannan Panday R, Elbers PW, et al. The value of artificial intelligence in laboratory medicine: current opinions and barriers to implementation. AJP. 2021;155(6):823-31.

. Pan L, Liu G, Lin F, Zhong S, Xia H, Sun X, et al. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia. Sci Rep. 2017;7(1):7402.

. Hauser RG, Esserman D, Beste LA, Ong SY, Colomb DG, Jr, Bhargava A, et al. A Machine Learning Model to Successfully Predict Future Diagnosis of Chronic Myelogenous Leukemia With Retrospective Electronic Health Records Data. AJP. 2021;156(6):1142-8.

. Ameen MU, Ashfaq M, Shahbaz F, Dilbar M, Ali A, Jamil I. Transforming Histopathology with Artificial Intelligence: Enhancing Diagnosis, Prognosis, and Personalized Care. MSRA. 2025;3(3):64-76.

. Ibrahim A, Gamble P, Jaroensri R, Abdelsamea MM, Mermel CH, Chen PHC, et al. Artificial intelligence in digital breast pathology: techniques and applications. The Breast. 2020;49:267-73.

. Rehman H, Hassan M, Umar M, Qurban A, Khawar H. Study to identify the signalling cascade behind expression level of PTEN and RB1 gene in breast cancer. Rep Glob Health Res. 2022;5:142.

. Hegde N, Hipp JD, Liu Y, Emmert-Buck M, Reif E, Smilkov D, et al. Similar image search for histopathology: SMILY. NPJ Digit Med. 2019;2(1):56.

. Soltan AA, Kouchaki S, Zhu T, Kiyasseh D, Taylor T, Hussain ZB, et al. Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test. The Lancet Dig Health. 2021;3(2):e78-87.

. Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, et al. On evaluation metrics for medical applications of artificial intelligence. Sci Rep. 2022;12(1):5979.

. Zhang S, Jiang H, Gao B, Yang W, Wang G. Identification of diagnostic markers for breast cancer based on differential gene expression and pathway network. Front Cell Dev Biol. 2022;9:811585.

. Wang T, Shao W, Huang Z, Tang H, Zhang J, Ding Z, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat Commun. 2021;12(1):3445.

. Wang W, Chen H. Predicting miRNA-disease associations based on lncRNA–miRNA interactions and graph convolution networks. Brief Bioinform. 2023;24(1):bbac495.

. Wekesa JS, Meng J, Luan Y. Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction. Genomics. 2020;112(5):2928-36.

. Fatima K, Haroon H, Laraib I, Jabbar E, Yousaf F, Jamil I. Integrating rapid diagnostics, AI technologies, and om-ics approaches for sepsis management and antimicrobial stewardship. J Med Health Sci Rev. 2025;2(2):6084-6101.

Downloads

Published

01-08-2025

How to Cite

1.
Revolutionizing Diagnostics with Artificial Intelligence: Current Innovations, Challenges, and Future Horizons. Chron Biomed Sci [Internet]. 2025 Aug. 1 [cited 2025 Aug. 2];2(3):PID58. Available from: https://cbsciences.us/index.php/cbs/article/view/58

Similar Articles

11-20 of 33

You may also start an advanced similarity search for this article.